We describe techniques for proving the existence (or nonexistence) of limit cycles in 2-dimensional systems, that is, testing for isolated closed orbits. Methods for ruling out closed orbits include index theory, Lyapunov functions, and Dulac's criterion. A method for establishing the existence of a limit cycle is the Poincare-Bendixson theorem.
► Next, worked examples of using the Poincare-Bendixson theorem.
https://youtu.be/SpltxX_LZWs
► Previous: An introduction to limit cycles
https://youtu.be/9rVscJwDpBo
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Subscribe https://is.gd/RossLabSubscribe
► From 'Nonlinear Dynamics and Chaos' (online course).
Playlist https://is.gd/NonlinearDynamics
► Additional background on 2D dynamical systems
Phase plane introduction
https://youtu.be/U4IM7HFzcuY
Classifying 2D fixed points
https://youtu.be/7Ewe_tVa5Fs
Gradient systems
https://youtu.be/uGUzPZzvPWQ
Index theory
https://youtu.be/bO8FxxpocNQ
► Follow me on Twitter
https://twitter.com/RossDynamicsLab
► Make your own phase portrait
https://is.gd/phaseplane
► Course lecture notes (PDF)
https://is.gd/NonlinearDynamicsNotes
References:
Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 7: Limit Cycles
Chapters
0:00 Testing for limit cycles
1:08 Rule out closed orbits with index theory
1:51 Rule out closed orbits if gradient system
2:33 Lyapunov function to rule out closed orbits
7:41 Dulac's criterion to rule out closed orbits
11:29 Establish existence of closed orbit: Poincaré-Bendixson theorem
13:32 Constructing a trapping region
Liapunov gradient systems passive dynamic biped walker Tacoma Narrows bridge collapse Charles Conley index theory gradient system autonomous on the plane phase plane are introduced 2D ordinary differential equations 2d ODE vector field topology cylinder bifurcation robustness fragility cusp unfolding perturbations structural stability emergence critical point critical slowing down supercritical bifurcation subcritical bifurcations buckling beam model change of stability nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions Hamiltonian Hamilton streamlines weather vortex dynamics point vortices pendulum Newton's Second Law Conservation of Energy topology
#NonlinearDynamics #DynamicalSystems #Oscillations #LimitCycles #VectorFields #topology #IndexTheory #EnergyConservation #Hamiltonian #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #PopulationBiology #FixedPoint #DifferentialEquations #Bifurcation #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #buckling #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #Wiggins #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #PopulationGrowth #DynamicalSystems #PopulationDynamics #Population #Logistic #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion