Index theory is a powerful global topological method to analyze vector fields, and reveal the existence (or absence) of fixed points and periodic orbits. As in electrostatics, where the vector field along a hypothetical Gaussian surface is used to infer point charges, this method uses the rotation of vectors along a test curve to infer the presence of fixed points. Properties of the index and several examples given.
► Next, Poincare-Hopf index theorem for compact manifolds.
https://youtu.be/CYOzEy0Sptk
► For background on 2D dynamical systems, see
Phase plane introduction
https://youtu.be/U4IM7HFzcuY
Classifying 2D fixed points
https://youtu.be/7Ewe_tVa5Fs
Linearizing about fixed points
https://youtu.be/m0d3sLqPftA
Rabbits versus sheep example
https://youtu.be/07V_UNLz0qs
Systems with special structure
https://youtu.be/uGUzPZzvPWQ
► From 'Nonlinear Dynamics and Chaos' (online course).
Playlist https://is.gd/NonlinearDynamics
► Dr. Shane Ross, Virginia Tech professor (Caltech PhD)
Subscribe https://is.gd/RossLabSubscribe
► Follow me on Twitter
https://twitter.com/RossDynamicsLab
► Make your own phase portrait
https://is.gd/phaseplane
► Course lecture notes (PDF)
https://is.gd/NonlinearDynamicsNotes
References:
Steven Strogatz, "Nonlinear Dynamics and Chaos", Chapter 6: Phase Plane
► Courses and Playlists by Dr. Ross
📚Attitude Dynamics and Control
https://is.gd/SpaceVehicleDynamics
📚Nonlinear Dynamics and Chaos
https://is.gd/NonlinearDynamics
📚Hamiltonian Dynamics
https://is.gd/AdvancedDynamics
📚Three-Body Problem Orbital Mechanics
https://is.gd/SpaceManifolds
📚Lagrangian and 3D Rigid Body Dynamics
https://is.gd/AnalyticalDynamics
📚Center Manifolds, Normal Forms, and Bifurcations
https://is.gd/CenterManifolds
Charles Conley index theory gradient system autonomous on the plane phase plane are introduced 2D ordinary differential equations 2d ODE vector field topology cylinder bifurcation robustness fragility cusp unfolding perturbations structural stability emergence critical point critical slowing down supercritical bifurcation subcritical bifurcations buckling beam model change of stability nonlinear dynamics dynamical systems differential equations dimensions phase space Poincare Strogatz graphical method Fixed Point Equilibrium Equilibria Stability Stable Point Unstable Point Linear Stability Analysis Vector Field Two-Dimensional 2-dimensional Functions Hamiltonian Hamilton streamlines weather vortex dynamics point vortices pendulum Newton's Second Law Conservation of Energy topology
#NonlinearDynamics #DynamicalSystems #VectorFields #topology #IndexTheory #EnergyConservation #Hamiltonian #Streamfunction #Streamlines #Vortex #SkewGradient #Gradient #PopulationBiology #FixedPoint #DifferentialEquations #Bifurcation #SaddleNode #Eigenvalues #HyperbolicPoints #NonHyperbolicPoint #CuspBifurcation #CriticalPoint #buckling #PitchforkBifurcation #robust #StructuralStability #DifferentialEquations #dynamics #dimensions #PhaseSpace #PhasePortrait #PhasePlane #Poincare #Strogatz #Wiggins #VectorField #GraphicalMethod #FixedPoints #EquilibriumPoints #Stability #NonlinearODEs #StablePoint #UnstablePoint #Stability #LinearStability #LinearStabilityAnalysis #StabilityAnalysis #VectorField #TwoDimensional #Functions #PopulationGrowth #DynamicalSystems #PopulationDynamics #Population #Logistic #GradientSystem #GradientVectorField #Cylinder #Pendulum #Newton #LawOfMotion