In the first video of this series, we give a broad overview of the parts of the PyTorch toolchain, including: Tensors, automatic gradient computation, model building basics, data loading abstractions, model training, and deployment for inference. This video is meant as a survey, with each topic being covered in more depth in subsequent videos.
Download all notebooks here: https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video1.zip
Download individual notebooks here:
1. Tensors -
04:45 to
07:50
https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video1/1+-+PyTorch+Tensors.ipynb
2. Autograd -
08:00 to
9:50
3. A simple model -
10:00 to
14:00
https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video1/2+-+A+Simple+PyTorch+model.ipynb
4. Datasets -
14:00 to
17:10
https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video1/3+-+Dataset+and+DataLoader.ipynb
5. Training loop -
17:10 to
21:00
https://pytorch-tutorial-assets.s3.amazonaws.com/youtube-series/video1/4+-+A+Simple+PyTorch+Training+Loop.ipynb