PyTorch 101 Crash Course For Beginners in 2025!

PyTorch 101 Crash Course For Beginners in 2025!

67.946 Lượt nghe
PyTorch 101 Crash Course For Beginners in 2025!
Want to master PyTorch? This crash course by ML Engineer Daniel Bourke is the most up-to-date PyTorch tutorial on YouTube! If you like this, you’ll LOVE Dan's full course! Dive into advanced topics and complete the FoodVision project 👇 🔥 Full PyTorch Bootcamp Course: https://zerotomastery.io/courses/learn-pytorch/ 🎁 Use YTPYTORCH10 to get 10% OFF 👨‍💻 Source Code: https://github.com/mrdbourke/pytorch-deep-learning 📓 Course Materials: https://www.learnpytorch.io/ 🐍 Free Python 101 Crash Course: https://youtu.be/4uBbCUjJ_G8 ========== ⏰ Timestamps ⏰ Ch. 0 – Fundamentals 00:00 Intro 01:34 What is Deep Learning? 07:38 Why Machine Learning? 11:21 Rule of ML 17:11 ML vs. DL 23:27 Neural Network Anatomy 32:58 Learning Paradigms 37:38 DL Applications 44:10 PyTorch Intro 54:32 Tensors 58:57 Course Overview 1:05:13 Best Practices 1:10:32 Resources 1:16:04 PyTorch Setup 1:23:53 Intro to Tensors 1:37:28 Random Tensors 1:47:36 Zeros & Ones 1:50:55 Ranges 1:56:22 Data Types 2:05:56 Attributes 2:14:29 Operations 2:20:38 Matrix Multiplication Pt. 1 2:30:23 Matrix Multiplication Pt. 2 2:38:24 Shape Errors 2:51:31 Aggregation 2:57:51 Min/Max 3:01:17 Reshaping 3:15:08 Squeeze/Unsqueeze 3:27:13 Indexing 3:36:55 Tensors & NumPy 3:46:13 Reproducibility 3:57:10 Accessing GPUs 4:09:10 Device-Agnostic Code 4:17:03 Exercises Ch. 1 – Workflow 4:22:03 Workflow Intro 4:24:59 Setup 4:32:23 Dataset Creation 4:42:14 Data Splitting 4:50:44 Data Visualization 4:58:39 Linear Model 5:12:59 Model Breakdown 5:19:19 Key PyTorch Classes 5:25:55 Inspect Model 5:35:56 Predictions 5:47:18 Training Intuition 5:55:43 Optimizer Setup 6:08:44 Training Loop 6:22:48 Write Training Loop 6:31:45 Training Steps Review 6:46:52 Run Training Loop 6:56:28 Testing Code 7:08:15 Testing Steps Review 7:23:07 Model Save/Load 7:37:02 Device-Agnostic Practice 7:52:09 Full Workflow: Data 7:58:27 Model 8:08:44 Training 8:21:34 Predictions 8:27:02 Save/Load 8:36:22 Exercises Ch. 2 – Neural Network Classification 8:40:30 Intro 8:50:21 Example 8:59:38 Architecture 9:06:19 Dataset Creation 9:18:47 Splitting Data 9:30:53 Modelling Steps 9:35:22 Small Network 9:46:29 Visualize Model 9:53:37 Using nn.Sequential 10:07:04 Functions Setup 10:22:05 From Logits to Labels 10:38:21 Training Loops 10:53:58 Predictions 11:08:21 Model Improvement 11:16:34 New Model 11:25:50 Test New Model 11:38:45 Straight Line Dataset 11:47:03 Fit Straight Line 11:57:14 Predictions Evaluation 12:02:47 Adding Non-Linearity 12:12:57 Non-Linear Model 12:23:32 Training Non-Linear Model 12:38:55 Evaluate Non-Linear Model 12:44:52 Activation Functions 12:54:37 Multi-Class Dataset 13:06:11 Multi-Class Model 13:18:49 Multi-Class Loss Function 13:25:39 Logits to Labels (Multi-Class) 13:36:51 Train Multi-Class Model 13:53:18 Evaluate Multi-Class Model 14:01:27 Classification Metrics 14:10:54 Exercises Ch. 3 – Computer Vision 14:14:02 Intro 14:26:01 Input/Output Shapes 14:36:19 What is CNN? 14:41:32 CV Libraries 14:51:02 Dataset Overview 15:05:43 Visualizing Samples 15:15:45 DataLoader Overview 15:23:13 DataLoaders Creation 15:35:46 Baseline Model 15:50:35 Loss Function & Optimizer 16:01:14 Timing Code 16:06:59 Training & Testing Loops 16:28:35 Evaluation Function 16:41:43 Device-Agnostic Code 16:45:40 Model 1: Non-Linear 16:54:53 Loss Function 16:58:07 Refactor Training Loop 17:06:46 Refactor Testing Loop 17:13:32 Train Model 1 17:25:35 Model 1 Results 17:29:54 Model 2: CNN Overview 17:38:28 Build CNN 17:58:26 Conv2D Explanation 18:13:36 Layer Shapes 18:27:32 CNN Loss Function 18:30:21 Train CNN 18:38:25 Compare Results 18:45:59 Best Model Predictions 18:57:48 Plot Predictions 19:06:09 Confusion Matrix Setup 19:21:40 Evaluate with Confusion Matrix 19:28:45 Save Best Model 19:40:22 Summary/Exercises Ch. 4 – Custom Datasets 19:46:34 Intro 19:56:38 Device-Agnostic Code 20:02:43 Download Images 20:16:58 Explore Format 20:25:50 Visualize Images 20:37:40 Transform Images 20:42:38 Data Augmentation 21:03:23 ImageFolder Loading 21:12:51 Visualize Loaded Images 21:20:20 DataLoader Creation 21:29:33 Custom Dataset Class 21:37:43 Helper Function 21:47:01 Write Custom Dataset 22:04:57 Dataset Class Comparison 22:12:21 Visualize Custom Dataset 22:26:50 Datasets to DataLoaders 22:33:59 Advanced Augmentation 22:48:33 Baseline Model Overview 22:56:59 Build Tiny VGG 23:08:34 Forward Pass 23:16:54 Torchinfo Summary 23:23:41 Training Functions 23:36:55 Train Model 0 23:47:19 Plot Loss Curves 24:06:36 Overfitting vs. Underfitting 24:20:59 Augmented Datasets 24:32:13 Train Model 1 24:39:34 Compare Loss Curves 24:54:12 Custom Data Predictions 25:38:56 Summary/Exercises Ch. 5 – Going Modular 25:48:17 Intro 26:00:02 Notebook Pt. 1 26:07:52 Dataset Download 26:12:52 Python Script Outline 26:26:53 PyTorch DataLoaders Script 26:37:40 Model Building Script 26:53:35 Save Model Script 26:59:52 Training Script 27:15:49 Summary/Exercises 27:21:58 Final Takeaway Full PyTorch Bootcamp 👉 https://zerotomastery.io/courses/learn-pytorch/