Ms. Coffee Bean explains and visualizes the paper "FNet: Mixing Tokens with Fourier Transforms" and what it all has to do with 🍰. Get some coffee and join Ms. Coffee Bean for this video!
➡️ AI Coffee Break Merch! 🛍️ https://aicoffeebreak.creator-spring.com/
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
🔥 Optionally, pay us a coffee to boost our Coffee Bean production! ☕
Patreon: https://www.patreon.com/AICoffeeBreak
Ko-fi: https://ko-fi.com/aicoffeebreak
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
Discussed paper:
📄 Lee-Thorp, J., Ainslie, J., Eckstein, I., & Ontanon, S. (2021). FNet: Mixing Tokens with Fourier Transforms. https://arxiv.org/pdf/2105.03824.pdf
Referenced videos:
📺 Ms. Coffee Bean explains the Transformer:
https://youtu.be/FWFA4DGuzSc
📺 ViLBERT (Vision and Language with Transformers):
https://youtu.be/dd7nE4nbxN0
📺 ViT: An image is worth 16x16 words:
https://youtu.be/DVoHvmww2lQ
📺 Multimodality:
https://youtu.be/P23EWdiPWDw
Outline:
*
00:00 Why attention is "meh"
*
02:46 How does FNet work?
*
05:28 How does Fourier help?
*
08:15 FNet performance
Other references:
📄 Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai, X., Unterthiner, T., ... & Dosovitskiy, A. (2021). MLP-Mixer: An all-MLP Architecture for Vision. arXiv preprint arXiv:2105.01601. https://arxiv.org/abs/2105.01601
📄 Liu, Hanxiao; Dai, Zihang; So, David R.; Le, Quoc V. "Pay Attention to MLPs" (2021) https://arxiv.org/abs/2105.08050
Music 🎵 : Cuttin It Close by DJ Freedem
--------------------------------------------------
🔗 Links:
YouTube: https://www.youtube.com/AICoffeeBreak
Twitter: https://twitter.com/AICoffeeBreak
Reddit: https://www.reddit.com/r/AICoffeeBreak/
#AICoffeeBreak #MsCoffeeBean #MachineLearning #AI #research