▬▬ Resources/Papers ▬▬▬▬▬▬▬
- Colab Notebook: https://colab.research.google.com/drive/1sjy9odlSSy0RBVgMTgP7s99NXsqglsUL?usp=sharing
- DDPM: https://arxiv.org/pdf/2006.11239.pdf
- DDPM Improved: https://arxiv.org/pdf/2105.05233.pdf
- Awesome Diffusion Models Github: https://github.com/heejkoo/Awesome-Diffusion-Models
- Outlier Diffusion Model Video:
https://www.youtube.com/watch?v=HoKDTa5jHvg&t=1338s&ab_channel=Outlier
- Positional Embeddings: https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
▬▬ Used Icons ▬▬▬▬▬▬▬▬▬▬
All Icons are from flaticon: https://www.flaticon.com/authors/freepik
▬▬ Used Music ▬▬▬▬▬▬▬▬▬▬▬
Music from Uppbeat (free for Creators!):
https://uppbeat.io/t/prigida
Song: Spooky Loops
License code: QKVNF1BODEDX33HO
▬▬ Timestamps ▬▬▬▬▬▬▬▬▬▬▬
00:00 Introduction
00:30 Generative Deep Learning
02:58 Diffusion Models Papers / Resources
04:06 What are diffusion models?
05:06 How to implement them?
05:29 [CODE] Cars Dataset
06:50 Forward process
10:15 Closed form sampling
12:15 [CODE] Noise Scheduler
16:10 Backward process (U-Net)
19:32 Timestep Embedding
20:52 [CODE] U-Net
25:35 Loss
26:28 [CODE] Loss
28:53 Training and Results
30:05 Final remarks
▬▬ Support me if you like 🌟
►Support me on Patreon: https://bit.ly/2Wed242
►Buy me a coffee on Ko-Fi: https://bit.ly/3kJYEdl
►Coursera: https://imp.i384100.net/b31QyP
►Link to this channel: https://bit.ly/3zEqL1W
►E-Mail:
[email protected]
▬▬ My equipment 💻
- Microphone: https://amzn.to/3DVqB8H
- Microphone mount: https://amzn.to/3BWUcOJ
- Monitors: https://amzn.to/3G2Jjgr
- Monitor mount: https://amzn.to/3AWGIAY
- Height-adjustable table: https://amzn.to/3aUysXC
- Ergonomic chair: https://amzn.to/3phQg7r
- PC case: https://amzn.to/3jdlI2Y
- GPU: https://amzn.to/3AWyzwy
- Keyboard: https://amzn.to/2XskWHP
- Bluelight filter glasses: https://amzn.to/3pj0fK2