In this Deep Learning Tutorial we learn how Autoencoders work and how we can implement them in PyTorch.
Get my Free NumPy Handbook:
https://www.python-engineer.com/numpybook
✅ Write cleaner code with Sourcery, instant refactoring suggestions in VS Code & PyCharm: https://sourcery.ai/?utm_source=youtube&utm_campaign=pythonengineer *
⭐ Join Our Discord : https://discord.gg/FHMg9tKFSN
📓 ML Notebooks available on Patreon:
https://www.patreon.com/patrickloeber
If you enjoyed this video, please subscribe to the channel:
▶️ : https://www.youtube.com/channel/UCbXgNpp0jedKWcQiULLbDTA?sub_confirmation=1
Resources:
https://www.cs.toronto.edu/~lczhang/360/lec/w05/autoencoder.html
Code: https://github.com/patrickloeber/pytorch-examples
More PyTorch Tutorials:
Complete Beginner Course:
https://youtu.be/c36lUUr864M
Dataloader: PXOzkkB5eH0
Transforms:
https://youtu.be/X_QOZEko5uE
Model Class:
https://youtu.be/VVDHU_TWwUg
CNN:
https://youtu.be/pDdP0TFzsoQ
~~~~~~~~~~~~~~~ CONNECT ~~~~~~~~~~~~~~~
🖥️ Website: https://www.python-engineer.com
🐦 Twitter - https://twitter.com/patloeber
✉️ Newsletter - https://www.python-engineer.com/newsletter
📸 Instagram - https://www.instagram.com/patloeber
🦾 Discord: https://discord.gg/FHMg9tKFSN
▶️ Subscribe: https://www.youtube.com/channel/UCbXgNpp0jedKWcQiULLbDTA?sub_confirmation=1
~~~~~~~~~~~~~~ SUPPORT ME ~~~~~~~~~~~~~~
🅿 Patreon - https://www.patreon.com/patrickloeber
#Python PyTorch
Timeline:
00:00 - Theory
02:58 - Data Loading
05:30 - Simple Autoencoder
15:02 - Training Loop
17:00 - Plot Images
19:00 - CNN Autoencoder
29:12 - Exercise For You
----------------------------------------------------------------------------------------------------------
* This is an affiliate link. By clicking on it you will not have any additional costs, instead you will support me and my project. Thank you so much for the support! 🙏