Learn the basics of computer vision with deep learning and how to implement the algorithms using Tensorflow.
Author: Folefac Martins from Neuralearn.ai
More Courses: www.neuralearn.ai
Link to Code: https://colab.research.google.com/drive/18u1KDx-9683iZNPxSDZ6dOv9319ZuEC_
YouTube Channel: https://www.youtube.com/@neuralearn
❤️ Try interactive Python courses we love, right in your browser: https://scrimba.com/freeCodeCamp-Python (Made possible by a grant from our friends at Scrimba)
⭐️ Contents ⭐️
Introduction
⌨️ (
0:00:00) Welcome
⌨️ (
0:05:54) Prerequisite
⌨️ (
0:06:11) What we shall Learn
Tensors and Variables
⌨️ (
0:12:12) Basics
⌨️ (
0:19:26) Initialization and Casting
⌨️ (
1:07:31) Indexing
⌨️ (
1:16:15) Maths Operations
⌨️ (
1:55:02) Linear Algebra Operations
⌨️ (
2:56:21) Common TensorFlow Functions
⌨️ (
3:50:15) Ragged Tensors
⌨️ (
4:01:41) Sparse Tensors
⌨️ (
4:04:23) String Tensors
⌨️ (
4:07:45) Variables
Building Neural Networks with TensorFlow [Car Price Prediction]
⌨️ (
4:14:52) Task Understanding
⌨️ (
4:19:47) Data Preparation
⌨️ (
4:54:47) Linear Regression Model
⌨️ (
5:10:18) Error Sanctioning
⌨️ (
5:24:53) Training and Optimization
⌨️ (
5:41:22) Performance Measurement
⌨️ (
5:44:18) Validation and Testing
⌨️ (
6:04:30) Corrective Measures
Building Convolutional Neural Networks with TensorFlow [Malaria Diagnosis]
⌨️ (
6:28:50) Task Understanding
⌨️ (
6:37:40) Data Preparation
⌨️ (
6:57:40) Data Visualization
⌨️ (
7:00:20) Data Processing
⌨️ (
7:08:50) How and Why ConvNets Work
⌨️ (
7:56:15) Building Convnets with TensorFlow
⌨️ (
8:02:39) Binary Crossentropy Loss
⌨️ (
8:10:15) Training Convnets
⌨️ (
8:23:33) Model Evaluation and Testing
⌨️ (
8:29:15) Loading and Saving Models to Google Drive
Building More Advanced Models in Teno Convolutional Neural Networks with TensorFlow [Malaria Diagnosis]
⌨️ (
8:47:10) Functional API
⌨️ (
9:03:48) Model Subclassing
⌨️ (
9:19:05) Custom Layers
Evaluating Classification Models [Malaria Diagnosis]
⌨️ (
9:36:45) Precision, Recall and Accuracy
⌨️ (
10:00:35) Confusion Matrix
⌨️ (
10:10:10) ROC Plots
Improving Model Performance [Malaria Diagnosis]
⌨️ (
10:18:10) TensorFlow Callbacks
⌨️ (
10:43:55) Learning Rate Scheduling
⌨️ (
11:01:25) Model Checkpointing
⌨️ (
11:09:25) Mitigating Overfitting and Underfitting
Data Augmentation [Malaria Diagnosis]
⌨️ (
11:38:50) Augmentation with tf.image and Keras Layers
⌨️ (
12:38:00) Mixup Augmentation
⌨️ (
12:56:35) Cutmix Augmentation
⌨️ (
13:38:30) Data Augmentation with Albumentations
Advanced TensorFlow Topics [Malaria Diagnosis]
⌨️ (
13:58:35) Custom Loss and Metrics
⌨️ (
14:18:30) Eager and Graph Modes
⌨️ (
14:31:23) Custom Training Loops
Tensorboard Integration [Malaria Diagnosis]
⌨️ (
14:57:00) Data Logging
⌨️ (
15:29:00) View Model Graphs
⌨️ (
15:31:45) Hyperparameter Tuning
⌨️ (
15:52:40) Profiling and Visualizations
MLOps with Weights and Biases [Malaria Diagnosis]
⌨️ (
16:00:35) Experiment Tracking
⌨️ (
16:55:02) Hyperparameter Tuning
⌨️ (
17:17:15) Dataset Versioning
⌨️ (
18:00:23) Model Versioning
Human Emotions Detection
⌨️ (
18:16:55) Data Preparation
⌨️ (
18:45:38) Modeling and Training
⌨️ (
19:36:42) Data Augmentation
⌨️ (
19:54:30) TensorFlow Records
Modern Convolutional Neural Networks [Human Emotions Detection]
⌨️ (
20:31:25) AlexNet
⌨️ (
20:48:35) VGGNet
⌨️ (
20:59:50) ResNet
⌨️ (
21:34:07) Coding ResNet from Scratch
⌨️ (
21:56:17) MobileNet
⌨️ (
22:20:43) EfficientNet
Transfer Learning [Human Emotions Detection]
⌨️ (
22:38:15) Feature Extraction
⌨️ (
23:02:25) Finetuning
Understanding the Blackbox [Human Emotions Detection]
⌨️ (
23:15:33) Visualizing Intermediate Layers
⌨️ (
23:36:20) Gradcam method
Transformers in Vision [Human Emotions Detection]
⌨️ (
23:57:35) Understanding ViTs
⌨️ (
24:51:17) Building ViTs from Scratch
⌨️ (
25:42:39) FineTuning Huggingface ViT
⌨️ (
26:05:52) Model Evaluation with Wandb
Model Deployment [Human Emotions Detection]
⌨️ (
26:27:13) Converting TensorFlow Model to Onnx format
⌨️ (
26:52:26) Understanding Quantization
⌨️ (
27:13:08) Practical Quantization of Onnx Model
⌨️ (
27:22:01) Quantization Aware Training
⌨️ (
27:39:55) Conversion to TensorFlow Lite
⌨️ (
27:58:28) How APIs work
⌨️ (
28:18:28) Building an API with FastAPI
⌨️ (
29:39:10) Deploying API to the Cloud
⌨️ (
29:51:35) Load Testing with Locust
Object Detection with YOLO
⌨️ (
30:05:29) Introduction to Object Detection
⌨️ (
30:11:39) Understanding YOLO Algorithm
⌨️ (
31:15:17) Dataset Preparation
⌨️ (
31:58:27) YOLO Loss
⌨️ (
33:02:58) Data Augmentation
⌨️ (
33:27:33) Testing
Image Generation
⌨️ (
33:59:28) Introduction to Image Generation
⌨️ (
34:03:18) Understanding Variational Autoencoders
⌨️ (
34:20:46) VAE Training and Digit Generation
⌨️ (
35:06:05) Latent Space Visualization
⌨️ (
35:21:36) How GANs work
⌨️ (
35:43:30) The GAN Loss
⌨️ (
36:01:38) Improving GAN Training
⌨️ (
36:25:02) Face Generation with GANs
Conclusion
⌨️ (
37:15:45) What's Next