How to create a classification model using XGBoost in Python? The tutorial will provide a step-by-step guide for this.
Problem Statement from Kaggle: https://www.kaggle.com/c/santander-customer-transaction-prediction/
Code on Github: https://github.com/harsh1kumar/learning/blob/master/machine_learning/santander_trxn_prediction/07_trxn_pred_xgboost.ipynb
Code on Kaggle: https://www.kaggle.com/harsh1kumar/santander-trxn-pred-xgboost
Timestamp:
00:00 - Introduction
01:02 - Import libraries and read data
02:49 - Create XGBoost classifier
06:31 - Evaluate model performance
07:54 - Hyper parameter tuning
11:32 - Result of hyper parameter tuning
13:59 - Build final XGBoost Model
15:05 - Performance as trees increase
16:34 - Feature Importance
17:11 - Find predictions for test data