What is data wrangling? Intro, Motivation, Outline, Setup -- Pt. 1 Data Wrangling Introduction

What is data wrangling? Intro, Motivation, Outline, Setup -- Pt. 1 Data Wrangling Introduction

45.154 Lượt nghe
What is data wrangling? Intro, Motivation, Outline, Setup -- Pt. 1 Data Wrangling Introduction
Data wrangling is too often the most time-consuming part of data science and applied statistics. Two tidyverse packages, tidyr and dplyr, help make data manipulation tasks easier. These videos introduce you to these tools. Keep your R code clean and clear and reduce the cognitive load required for common but often complex data science tasks. Pt. 1: What is data wrangling? Intro, Motivation, Outline, Setup https://youtu.be/jOd65mR1zfw - 01:44 Intro and what’s covered Ground Rules - 02:40 What’s a tibble - 04:50 Use View - 05:25 The Pipe operator: - 07:20 What do I mean by data wrangling? Pt. 2: Tidy Data and tidyr https://youtu.be/1ELALQlO-yM - /00:48 Goal 1 Making your data suitable for R - /01:40 `tidyr` “Tidy” Data introduced and motivated - /08:15 `tidyr::gather` - /12:38 `tidyr::spread` - /15:30 `tidyr::unite` - /15:30 `tidyr::separate` Pt. 3: Data manipulation tools: `dplyr` https://youtu.be/Zc_ufg4uW4U - 00.40 setup - /02:00 `dplyr::select` - /03:40 `dplyr::filter` - /05:05 `dplyr::mutate` - /07:05 `dplyr::summarise` - /08:30 `dplyr::arrange` - /09:55 Combining these tools with the pipe (Setup for the Grammar of Data Manipulation) - /11:45 `dplyr::group_by` - /15:00 `dplyr::group_by` Pt. 4: Working with Two Datasets: Binds, Set Operations, and Joins https://youtu.be/AuBgYDCg1Cg Combining two datasets together - /00.42 `dplyr::bind_cols` - /01:27 `dplyr::bind_rows` - /01:42 Set operations `dplyr::union`, `dplyr::intersect`, `dplyr::set_diff` - /02:15 joining data `dplyr::left_join`, `dplyr::inner_join`, `dplyr::right_join`, `dplyr::full_join`, ______________________________________________________________ Cheatsheets: https://www.rstudio.com/resources/cheatsheets/ Documentation: `tidyr` docs: tidyr.tidyverse.org/reference/ - `tidyr` vignette: https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html `dplyr` docs: http://dplyr.tidyverse.org/reference/ - `dplyr` one-table vignette: https://cran.r-project.org/web/packages/dplyr/vignettes/dplyr.html - `dplyr` two-table (join operations) vignette: https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html ______________________________________________________________ New York Times “For Big-Data Scientists, ‘Janitor Work’ Is Key Hurdle to Insights”, By STEVE LOHRAUG. 17, 2014 https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html ______________________________________________________________