Vectorized Query Execution in Apache Spark at Facebook Chen Yang Facebook

Vectorized Query Execution in Apache Spark at Facebook Chen Yang Facebook

7.876 Lượt nghe
Vectorized Query Execution in Apache Spark at Facebook Chen Yang Facebook
A standard query execution system processes one row at a time. Vectorized query execution batches multiples rows together in a columnar format, and each operator uses simple loops to iterate over data within a batch. This feature greatly reduces the CPU usage for reading, writing and query operations like scanning, filtering. In this talk, we will take a deep dive into Facebook's ORC-based vectorized reader and writer implementation, discuss how vectorization affects performance of various data types in Hive/Spark, and quantify the improvements vectorization brings to the Facebook Warehouse. About: Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business. Read more here: https://databricks.com/product/unified-data-analytics-platform Connect with us: Website: https://databricks.com Facebook: https://www.facebook.com/databricksinc Twitter: https://twitter.com/databricks LinkedIn: https://www.linkedin.com/company/databricks Instagram: https://www.instagram.com/databricksinc/ Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here. https://databricks.com/databricks-named-leader-by-gartner