In this tutorial, we are performing sentiment analysis on live tweets pulled from Twitter via API using Python Tweepy. We are applying Python Library TextBlob & Natural Language Toolkit, viz, NLTK Sentiment Vader SentimentIntensityAnalyzer for Sentiment Computations..
🔥 Links to the entire series:
#1 - How to set up your own Twitter API, that enables you to pull 2 million tweets per month:
youtu.be/fQLa40L_BWA
#2 - A quick walkthrough to Tweepy, which is an easy-to-use Python library for accessing Twitter API:
youtu.be/9ueHyvMOqJ4
#3: Sentiment Analysis of Live Tweets:
youtu.be/YdRTs0LmiuU
Happy learning :)
🔥 Sections
00:00 Introduction
01:07 Solution Architecture
02:16 TextBlob - Basics
03:58 NLTK Sentiment Vader - Basics
05:07 Sentiment Analysis on Tweets
08:12 Donut Chart & Word Cloud
11:16 Let's talk Machine Learning
🔥 Resources:
Project files: https://drive.google.com/drive/folders/1ya2UGUuTjE_YmNv9kw6F3vP-Cd-Up7H7?usp=sharing
Tweepy Documentation: https://docs.tweepy.org/en/stable/index.html
Twitter API 2.0 Documentation: https://developer.twitter.com/en/docs/twitter-api
Twitter OAuth Comparison: https://developer.twitter.com/en/docs/authentication/guides/v2-authentication-mapping
TextBlob Sentiments Documentation: https://textblob.readthedocs.io/en/dev/
NLTK Sentiment Vader SentimentIntensityAnalyzer Documentation: https://www.nltk.org/api/nltk.sentiment.vader.html
Our other popular ML Projects:
1. Sentiment Analysis Project using LSTM:
https://youtu.be/oWo9SNcyxlI
2. Sentiment Analysis Project (End-to-end) with ML Model Building + Deployment (using Flask):
---- a. Model Building:
https://youtu.be/lKAdxN0qrgk (Part-1)
---- b. Model Deployment:
https://youtu.be/KEQCVwJU5KU (Part-2)
3. Sentiment Analysis Project using Traditional ML:
https://youtu.be/zwR6M5zpnWs
4. Analytics-enabled Marketing:
youtu.be/g7hEPopJ4MY
5. Credit Scoring Project:
youtu.be/8jzvzRo3Ij0
6. Face Recognition Project:
youtu.be/4EeUkpAYrYo
🔥 Do like, share & subscribe to our channel. Keep in touch:
Website: https://www.skillcate.com
Email:
[email protected]
Medium: https://medium.com/@skillcate
GitHub: https://github.com/skillcate
Facebook: https://www.facebook.com/groups/mlprojects
Instagram: https://www.instagram.com/skillcate/