In this video, we delve into the world of Pandas interpolation for data analysis. Join me as I demonstrate how to clean data effectively using linear, quadratic, and cubic spline interpolation techniques in Pandas. Whether you're a data scientist or analyst, understanding interpolation is crucial for accurate data manipulation. Stay tuned as I break down the theory behind interpolation and provide practical examples for real-world applications. Let's master the art of data cleaning with Pandas together!
📖 CHAPTERS
00:00 - Intro
00:49 - Setup
01:18 - Data Preparation
03:43 - Initial Plotting of the Data
07:23 - Linear Interpolation Intro
08:30 - Linear Interpolation Theory
10:16 - Linear Interpolation Using Pandas
12:43 - Quadratic Interpolation Intro
13:15 - Quadratic Interpolation Theory
15:18 - Quadratic Interpolation Using Pandas
18:14 - Ow My Spline!
18:44 - Spline Interpolation Theory
20:42 - Spline Interpolation in Pandas
22:07 - Error Estimation
31:26 - Regression vs. Interpolation
32:15 - Summary
32:32 - Outro and Thanks!
🔗REFERENCES
- Data Cleaning Intro:
https://www.youtube.com/watch?v=ycQbwBqB8wY
- Github: https://github.com/trentpark8800/python-bites/blob/main/advanced-data-cleaning-with-pandas/data/data_to_be_cleaned.csv
- MIT OCW Interpolation Chapter - https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2012/fd3b0e48e1babfcc36db7c012078318d_MIT18_330S12_Chapter3.pdf
💵SUPPORT THE CHANNEL
- Become a channel member: https://www.youtube.com/channel/UCY5ZuZAWVUBzkDXQr5b84sQ/join
- Direct, once off transfers: https://www.paypal.com/paypalme/trentdoesmath