LORA training EXPLAINED for beginners

LORA training EXPLAINED for beginners

139.618 Lượt nghe
LORA training EXPLAINED for beginners
LORA training guide/tutorial so you can understand how to use the important parameters on KohyaSS. Train in minutes with Dreamlook.AI: https://dreamlook.ai/?via=N4T code: "NOT4TALENT" Join our Discord server: https://discord.gg/FWPkVbgYyK (Amazing people like LeFourbe on there) ------------- Links used in the VIDEO ---------- Folder to JSON Script: https://drive.google.com/drive/folders/1xW4SFCXi8iX0bN4--zH2A-cvv_1Ah1Zg?usp=sharing KohyaSS: https://github.com/bmaltais/kohya_ss Fastest Model training: https://dreamlook.ai Alpha Rank and Dim post by @AsheJunius https://ashejunius.com/alpha-and-dimensions-two-wild-settings-of-training-lora-in-stable-diffusion-d7ad3e3a3b0a Google Colabs for "free" training: https://github.com/camenduru/stable-diffusion-webui-colab/tree/training#-community-kohya-ss--training-colabs-gpu https://colab.research.google.com/github/Linaqruf/kohya-trainer/blob/main/kohya-LoRA-dreambooth.ipynb Super detailed LORA training guide by: "The Other Lora Rentry Guy" ?: https://rentry.co/59xed3#preamble BooruDatasetTagManager: https://github.com/starik222/BooruDatasetTagManager/releases/tag/v1.6.5 ------------- Social Media ---------- -Instagram: https://www.instagram.com/not4talent_ai/ -Twitter: https://twitter.com/not4talent Make sure to subscribe if you want to learn about AI and grow with the community as we surf the AI wave :3 #aiairt #digitalart #automatic1111#stablediffusion #ai #free #tutorial #betterart #goodimages #sd #digitalart #artificialintelligence #kohyaSS #kohya #LORA #Training #LoraTraining #outpainting #img2img #dreamlook #dreamlookAI #consistentCharacters #characters #characterdesign #personaje 0:00 intro 0:10 What we need 0:23 Install KohyaSS 1:38 Thanks to LeFourbe 1:54 What are LORA 2:35 Best Datasets 4:26 How to get the images 5:06 Best Captioning 6:32 Captioning but AI POV 9:38 Captioning Example 11:00 Using BooruDatasetTagmanager 13:10 Training decisions 13:25 Choosing a model 14:02 Folder Structure making 14:32 What Regularization does 15:06 Steps and epochs Explained 16:50 Aprox recommendation 17:00 Ill use 14 steps and 6 epochs 17:32 Creating the folders 18:00 Training Parameters 19:25 Learning Rate Explained 20:40 LR scheduler 21:02 Use AdamW or AdamW8bit 21:30 Network Rank and Alpha 22:10 Resolution and Bucketing 23:10 Advanced Options 24:05 Train AI in minutes (sponsored) 26:10 Test Results 27:23 Thanks for watching :3