☕️ Buy me a coffee: https://paypal.me/donationlink240
🙏🏻 Support me on Patreon: https://www.patreon.com/c/ahmadbazzi
In Lecture 23 of this course on Convex Optimization, we focus on algorithms that solve unconstrained minimization type problems. The lecture evolves around unconstrained minimization problems that might or might not enjoy closed form solutions. Descent methods are discussed along with exact line search and backtracking. MATLAB implementations are given along the way.
This lecture is outlined as follows:
00:00:00 Introduction
00:01:06 Unconstrained Minimization
00:01:36 Iterative Algorithm Assumptions
00:04:28 Gradient Equivalence
00:09:04 Unconstrained Least Squares
00:20:13 Unconstrained Geometric Program
00:28:10 Initial Subset Assumption
00:35:16 Intuitive Solution of Logarithmic Barrier Minimization
00:40:42 Generalization of Logarithmic Barriers
00:42:57 Descent Methods
00:50:42 Gradient Descent
00:52:59 Exact Line Search
00:56:23 Backtracking
01:00:25 MATLAB: Gradient Descent with Exact Line Search
01:17:35 MATLAB: Gradient Descent with Backtracking
01:20:12 MATLAB: Gradient Descent with Explicit Step Size Update
01:28:07 Summary
01:30:59 Outro
---------------------------------------------------------------------------------------------------------
Lecture 1 | Introduction to Convex Optimization:
https://youtu.be/SHJuGASZwlE
Lecture 2 | Convex Sets:
https://youtu.be/QV5qtTq1Tro
Lecture 3 | Convex Functions:
https://youtu.be/XzW-B1CJ_ao
Lecture 4 | Convex Optimization Principles :
https://youtu.be/aMC3WPGMLes
Lecture 5 | Linear Programming & SIMPLEX algorithm w MATLAB:
https://youtu.be/dAyeNmz6p-c
Lecture 6 | Quadratic Programs:
https://youtu.be/kM52hSvBY4k
Lecture 7 | Quadratically Constrained Quadratic Programs:
https://youtu.be/SP2-7AG2wfk
Lecture 8 | Second Order Cone Programming:
https://youtu.be/sVbcJx4g-LQ
Lecture 9 | Geometric Programs:
https://youtu.be/PoLKyYsmVD0
Lecture 10 | Generalized Geometric Programs:
https://youtu.be/Lio9kxMYbRk
Lecture 11 | SemiDefinite Programming
https://youtu.be/XwyE8vIszo4
Lecture 12 | Vector and Multicriterion Optimization | Pareto Optimal points and the Pareto Frontier
https://youtu.be/iUAxxsz1Axw
Lecture 13 | Optimal Trade-off Analysis
https://youtu.be/YtGFNsZ0RVc
Lecture 14 | Lagrange Dual Function
https://youtu.be/Qneah_lyQ0o
Lecture 15 | Lagrange Dual Problem
https://youtu.be/0WpYucMfaHM
Lecture 16 | Certificate of Suboptimality
https://youtu.be/_muH67CqTME
Lecture 17 | Complementary Slackness
https://youtu.be/tFWjzEQMq2g
Lecture 18 | KKT Conditions
https://youtu.be/JFbC2uoN7e4
Lecture 19 | Perturbation and Sensitivity Analysis
https://youtu.be/COQtsv1SohQ
Lecture 20 | Equivalent Reformulations
https://youtu.be/EjtIlfa5DSM
Lecture 21 | Weak Alternatives
https://youtu.be/CRAaGh2wVZ8
Lecture 22 | Strong Alternatives
https://youtu.be/sB11BV1gyXc
---------------------------------------------------------------------------------------------------------
References:
[1] Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
[2] Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science & Business Media, 2013.
Reference no. 3:
[3] Ben-Tal, Ahron, and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and engineering applications. Vol. 2. Siam, 2001.
---------------------------------------------------------------------------------------------------------
Instructor: Dr. Ahmad Bazzi
IG: https://www.instagram.com/drahmadbazzi/
FB: https://www.facebook.com/profile.php?...
RG: https://www.researchgate.net/profile/...
MSE: https://math.stackexchange.com/users/...
YT: https://www.youtube.com/c/AhmadBazzi
---------------------------------------------------------------------------------------------------------
Credits :
Microsoft OneNote: https://products.office.com/en-gb/one...
#ConvexOptimization #UnconstrainedMinimization #Algorithms