Toggle navigation
Video
♫ Thôn Quê
♫ Sông Đáy
♫ Liên Khúc
♫ Nhạc Đám Cưới
♫ Nonstop Việt
♫ Không Lời
♫ Nhạc Vàng Trữ Tình
♫ Nhạc Trẻ
Lecture 2 | The Universal Approximation Theorem
Carnegie Mellon University Deep Learning
38.604 Lượt nghe
Prev
play
stop
Next
mute
max volume
00:00
00:00
repeat
Update Required
To play the media you will need to either update your browser to a recent version or update your
Flash plugin
.
Tải MP3
MÔ TẢ MP3
TIẾP THEO
Lecture 2 | The Universal Approximation Theorem
Carnegie Mellon University Course: 11-785, Intro to Deep Learning Offering: Fall 2019 For more information, please visit: http://deeplearning.cs.cmu.edu/ Contents: • Neural Networks as Universal Approximators
Những bài liên quan
1:18:43
Lecture 3 | Learning, Empirical Risk Minimization, and Optimization
17.5 N
Carnegie Mellon University Deep Learning
11:02
A shallow grip on neural networks (What is the "universal approximation theorem"?)
13.9 N
Sheafification of G
1:09:13
Lecture 1 | The Perceptron - History, Discovery, and Theory
42.9 N
Carnegie Mellon University Deep Learning
13:16
Universal Approximation Theorem - The Fundamental Building Block of Deep Learning
6.6 N
Serrano.Academy
1:16:48
Randy Pausch's Last Lecture - Remastered
35.3 N
Carnegie Mellon University
1:17:01
Lecture 4 | The Backpropagation Algorithm
12.7 N
Carnegie Mellon University Deep Learning
1:34:56
KAN: Kolmogorov-Arnold Networks | Ziming Liu
39.4 N
Valence Labs
1:16:31
CMU Advanced NLP Spring 2025 (11): Reinforcement Learning
2.4 N
Sean Welleck
1:11:57
Lecture 4.1 - Multimodal Alignment (CMU Multimodal Machine Learning, Fall 2023)
2 N
LP Morency
25:28
Watching Neural Networks Learn
1.6 Tr
Emergent Garden
13:49
Approximations. The engineering way.
270.8 N
Zach Star
1:21:23
Lecture 9 | (1/3) Convolutional Neural Networks
6.9 N
Carnegie Mellon University Deep Learning
59:00
An Introduction to Graph Neural Networks: Models and Applications
312.2 N
Microsoft Research
1:15:33
Steven Pinker Promotes Civil Discourse in Higher Education in President's Lecture Series
10.8 N
Carnegie Mellon University
1:22:15
Lecture 6 | Convergence, Loss Surfaces, and Optimization
7.2 N
Carnegie Mellon University Deep Learning
1:03:59
Lecture 01: Course Overview (CMU 15-462/662)
66 N
Keenan Crane
6:25
The Universal Approximation Theorem for neural networks
78.4 N
Michael Nielsen
1:09:26
MIT Introduction to Deep Learning | 6.S191
328 N
Alexander Amini
17:38
The moment we stopped understanding AI [AlexNet]
1.9 Tr
Welch Labs
1:18:11
Neural Networks Are Elastic Origami!
13.1 N
Machine Learning Street Talk
Nhạc Theo Chủ Đề
Nhạc Không Lời
Nhạc Vàng HOT
Nhạc Liên Khúc
Nhạc DJ HOT
Nhạc Hà Nam
Nhạc Vĩnh Yên
Nhạc Hưng Yên
Nhạc Hải Dương
Nhạc Hà Tây
Nhạc Sông Đáy
LK Nhạc Vàng
LK Nhạc Trẻ
Liên kết website