30 AI Projects You Can Build This Weekend: https://the-data-entrepreneurs.kit.com/30-ai-projects
In this video, I give a beginner-friendly introduction to retrieval augmented generation (RAG) and show how to use it to improve a fine-tuned model from a previous video in this LLM series.
▶️ Series Playlist: https://www.youtube.com/playlist?list=PLz-ep5RbHosU2hnz5ejezwaYpdMutMVB0
🎥 Fine-tuning with QLoRA:
https://youtu.be/XpoKB3usmKc
📰 Read more: https://medium.com/towards-data-science/how-to-improve-llms-with-rag-abdc132f76ac?sk=d8d8ecfb1f6223539a54604c8f93d573
💻 Colab: https://colab.research.google.com/drive/1peJukr-9E1zCo1iAalbgDPJmNMydvQms?usp=sharing
💻 GitHub: https://github.com/ShawhinT/YouTube-Blog/tree/main/LLMs/rag
🤗 Model: https://huggingface.co/shawhin/shawgpt-ft
References
[1] https://github.com/openai/openai-cookbook/blob/main/examples/Question_answering_using_embeddings.ipynb
[2]
https://www.youtube.com/watch?v=efbn-3tPI_M
[3] https://docs.llamaindex.ai/en/stable/understanding/loading/loading.html
[4]
https://www.youtube.com/watch?v=Zj5RCweUHIk&list=WL&index=4
--
Homepage: https://www.shawhintalebi.com/
Book a call: https://calendly.com/shawhintalebi
Intro -
0:00
Background -
0:53
2 Limitations -
1:45
What is RAG? -
2:51
How RAG works -
5:03
Text Embeddings + Retrieval -
5:35
Creating Knowledge Base -
7:37
Example Code: Improving YouTube Comment Responder with RAG -
9:34
What's next? -
20:58