High Performance Python Processing Pipeline

High Performance Python Processing Pipeline

7.801 Lượt nghe
High Performance Python Processing Pipeline
We start with a simple signals processing workload, and then accelerate it by several orders magnitude using the following libraries: 1. Numpy: https://numpy.org 2. Numba: https://numba.pydata.org 3. Dask: https://dask.org 4. CuPy: https://cupy.chainer.org 5. Numba CUDA: https://numba.pydata.org/numba-doc/dev/cuda/index.html We eventually run a real-time streaming system on multi-GPU hardware. For more information on GPU computing in Python in general, consider looking at information about RAPIDS at https://rapids.ai Notebooks: - CPU: https://nbviewer.jupyter.org/urls/gist.github.com/mrocklin/148da2076cac9ba183071241b3d8e18a/raw/5e0e08cb1c2cab5d8a92ecf4221bf6b9f0eabf17/pipeline-cpus.ipynb - GPU: https://nbviewer.jupyter.org/urls/gist.github.com/mrocklin/148da2076cac9ba183071241b3d8e18a/raw/5e0e08cb1c2cab5d8a92ecf4221bf6b9f0eabf17/pipeline-gpus.ipynb - Gist: https://gist.github.com/mrocklin/148da2076cac9ba183071241b3d8e18a Update: Jacob Tomlinson ran this same computation on a gamer laptop to see the performance one can get from a cheap consumer system: https://www.youtube.com/watch?v=7Bw1OqVuLtQ