Toggle navigation
Video
♫ Thôn Quê
♫ Sông Đáy
♫ Liên Khúc
♫ Nhạc Đám Cưới
♫ Nonstop Việt
♫ Không Lời
♫ Nhạc Vàng Trữ Tình
♫ Nhạc Trẻ
ETH Zürich AISE: Course Introduction
CAMLab, ETH Zürich
7.825 Lượt nghe
Prev
play
stop
Next
mute
max volume
00:00
00:00
repeat
Update Required
To play the media you will need to either update your browser to a recent version or update your
Flash plugin
.
Tải MP3
MÔ TẢ MP3
TIẾP THEO
ETH Zürich AISE: Course Introduction
↓↓↓ LECTURE OVERVIEW BELOW ↓↓↓ ETH Zürich AI in the Sciences and Engineering 2024 *Course Website* (links to slides and tutorials): https://www.camlab.ethz.ch/teaching/ai-in-the-sciences-and-engineering-2024.html Lecturers: Dr. Ben Moseley and Prof. Siddhartha Mishra ▬ Lecture Content ▬▬▬
0:00
- The impact of AI in science
5:26
- Why is AI so popular today?
11:10
- Grand scientific challenges
18:11
- Flaws of deep learning
25:09
- Scientific machine learning (SciML)
28:15
- Course learning objectives & timeline
34:52
- Key scientific tasks
56:23
- Examples of SciML algorithms
1:03:52
- Different classes of SciML algorithms ▬ Course Overview ▬▬▬ Lecture 1: Course Introduction
youtube.com/watch?v=LkKvhvsf6jY&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 2: Introduction to Deep Learning Part 1
youtube.com/watch?v=OXmLwCQA7F4&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 3: Introduction to Deep Learning Part 2
youtube.com/watch?v=z3tQaNOwQqM&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 4: Importance of PDEs in Science
youtube.com/watch?v=UiZxDRBd0Q8&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 5: Physics-Informed Neural Networks – Introduction
youtube.com/watch?v=D-F7BYRhAkQ&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 6: Physics-Informed Neural Networks – Limitations and Extensions Part 1
youtube.com/watch?v=S11QK8baGVI&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 7: Physics-Informed Neural Networks – Limitations and Extensions Part 2
youtube.com/watch?v=NFtE1pyD5LA&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 8: Physics-Informed Neural Networks – Theory Part 1
youtube.com/watch?v=AaChPylEH6U&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 9: Physics-Informed Neural Networks – Theory Part 2
youtube.com/watch?v=FqdJ2Jx9MVc&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 10: Introduction to Operator Learning Part 1
youtube.com/watch?v=yhHhMmiNl_g&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 11: Introduction to Operator Learning Part 2
youtube.com/watch?v=lEUgPvDi5O8&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 12: Fourier Neural Operators
youtube.com/watch?v=b96wRdjH1Lg&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 13: Spectral Neural Operators and Deep Operator Networks
youtube.com/watch?v=BxklDO0TMlA&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 14: Convolutional Neural Operators
youtube.com/watch?v=5XaLKR08TwI&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 15: Time-Dependent Neural Operators
youtube.com/watch?v=u1KFcAvjyCI&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 16: Large-Scale Neural Operators
youtube.com/watch?v=FPXW9MxjV48&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 17: Attention as a Neural Operator
youtube.com/watch?v=wJSgLRiU7D4&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 18: Windowed Attention and Scaling Laws
youtube.com/watch?v=YtJhReM5bHY&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 19: Introduction to Hybrid Workflows Part 1
youtube.com/watch?v=fJbt6VKYycA&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 20: Introduction to Hybrid Workflows Part 2
youtube.com/watch?v=h8BH-6tjecc&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 21: Neural Differential Equations
youtube.com/watch?v=jnjYsm4NjhE&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 22: Introduction to Diffusion Models
youtube.com/watch?v=Tohlijxz3XQ&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 23: Introduction to JAX
youtube.com/watch?v=0JsPcm_Vl1g&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 24: Symbolic Regression and Model Discovery
youtube.com/watch?v=fe-PC4lw4yw&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 25: Applications of AI in Chemistry and Biology Part 1
youtube.com/watch?v=Y3rvzsW8TVU&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
Lecture 26: Applications of AI in Chemistry and Biology Part 2
youtube.com/watch?v=dDvTA_MoO_4&list=PLJkYEExhe7rYFkBIB2U5pf_RWzYnFLj7r
▬ Course Description ▬▬▬ AI is having a profound impact on science by accelerating discoveries across physics, chemistry, biology, and engineering. This course presents a highly topical selection of AI applications across these fields. Emphasis is placed on using AI, particularly deep learning, to understand systems modelled by PDEs, and key scientific machine learning concepts and themes are discussed. ▬ Course Learning Objectives ▬▬▬ - Aware of advanced applications of AI in the sciences and engineering - Familiar with the design, implementation, and theory of these algorithms - Understand the pros/cons of using AI and deep learning for science - Understand key scientific machine learning concepts and themes
Những bài liên quan
47:30
ETH Zürich AISE: Introduction to Deep Learning Part 1
2.4 N
CAMLab, ETH Zürich
1:26:03
ETH Zürich AISE: Introduction to Deep Learning Part 2
1.7 N
CAMLab, ETH Zürich
59:48
[1hr Talk] Intro to Large Language Models
2.8 Tr
Andrej Karpathy
22:58
Physics-Informed Machine Learning, Section 1 - Introduction, Part 1
12.9 N
navid zobeiry
1:36:14
Digital Design and Computer Arch. - L14: Out-of-Order Execution (Spring 2025)
1.6 N
Onur Mutlu Lectures
46:44
МЫ КУПИЛИ ДАСТЕР ПО ЦЕНЕ НОВОЙ NIVA SPORT И ЭТО ДРОВА.
160.5 N
AcademeG
1:46:46
Алексей Венедиктов о переговорах в Стамбуле, приятелях во власти, хейте от эмигрантов и новой жизни
622.5 N
Редакция
42:39
ПРИЕХАЛИ в САМУЮ ГРЯЗНУЮ СТРАНУ в МИРЕ! Я заболел
168.4 N
Petya English
38:15
Переговоры в Турции: на что надеяться? | Делегация без Путина, но с Мединским. Затишье на фронте
88.1 N
varlamov
27:14
Transformers (how LLMs work) explained visually | DL5
6.2 Tr
3Blue1Brown
16:15
For the Protection and Restoration of Nature | Thomas Crowther | Climeworks Carbon Removal Summit 24
2 N
Climeworks
1:04:51
Computer Architecture - Lecture 27: Systolic Arrays (ETH Zürich, Fall 2020)
17.7 N
Onur Mutlu Lectures
28:44
ЛОВУШКА ДЛЯ ПУТИНА В СТАМБУЛЕ. Санкции, которые могут сокрушить Кремль
165.8 N
Майкл Наки
1:27:02
ETH Zürich AISE: Physics-Informed Neural Networks – Introduction
4.1 N
CAMLab, ETH Zürich
1:14:45
ETH Zürich AISE: Symbolic Regression and Model Discovery
1.6 N
CAMLab, ETH Zürich
1:46:07
Digital Design and Computer Architecture - Lecture 1: Introduction and Basics (Spring 2023)
79.7 N
Onur Mutlu Lectures
47:27
Physics Informed Machine Learning: High Level Overview of AI and ML in Science and Engineering
277.5 N
Steve Brunton
28:23
СЕЧИНСКИЕ: Конфликт с Кадыровым. Сечин и ФСБ. Загадочная смерть сына | Битва кланов
88.4 N
Ходорковский LIVE
1:10:08
ETH Zürich AISE: Physics-Informed Neural Networks – Limitations and Extensions Part 2
1.2 N
CAMLab, ETH Zürich
1:32:53
ETH Zürich DLSC: Physics-Informed Neural Networks - Applications
25.4 N
CAMLab, ETH Zürich
Nhạc Theo Chủ Đề
Nhạc Không Lời
Nhạc Vàng HOT
Nhạc Liên Khúc
Nhạc DJ HOT
Nhạc Hà Nam
Nhạc Vĩnh Yên
Nhạc Hưng Yên
Nhạc Hải Dương
Nhạc Hà Tây
Nhạc Sông Đáy
LK Nhạc Vàng
LK Nhạc Trẻ
Liên kết website