Dimension of Sum of Subspaces | Dim ( U1 + U2 ) = Dim U1 + Dim U2 - Dim(U1 ∩ U2) | Ganitya
Dimension of Sum of Subspaces | Dim ( U1 + U2 ) = Dim U1 + Dim U2 - Dim(U1 ∩ U2) | Ganitya
Basis and Dimension Full Playlist Link https://www.youtube.com/playlist?list=PL15h-I4HvELLlfZX_PAZ69S6OS0lDFr4A
Linear Algebra Full Playlist Link https://www.youtube.com/playlist?list=PL15h-I4HvELK8pdZJC1DcWxP24axbJYan
In This Video
Theorem - Prove that Dim ( U1 + U2 ) = Dim U1 + Dim U2 - Dim(U1 ∩ U2)
Prove that Dim ( U1 + U2 ) = Dim U1 + Dim U2 - Dim(U1 intrsection U2)
Find Dim (U1 + U2)
Find Dimension of Sum of Subspaces
Dimension of Sum of Subspaces
Dimension of Direct Sum of two Subspaces
if u1 and u2 are finite dimensional subspaces of a finite dimensional vector space V. Prove u1 + u2 is also finite dimensional and Dim ( U1 + U2 ) = Dim U1 + Dim U2 - Dim(U1 ∩ U2)
Prove that sum of subspaces of finite dimensional vector space is also finite dimensional