DDPS |

DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris

10.028 Lượt nghe
DDPS | "When and why physics-informed neural networks fail to train" by Paris Perdikaris
Physics-informed neural networks (PINNs) have lately received great attention thanks to their flexibility in tackling a wide range of forward and inverse problems involving partial differential equations. However, despite their noticeable empirical success, little is known about how such constrained neural networks behave during their training via gradient descent. More importantly, even less is known about why such models sometimes fail to train at all. In this work, we aim to investigate these questions through the lens of the Neural Tangent Kernel (NTK); a kernel that captures the behavior of fully-connected neural networks in the infinite width limit during training via gradient descent. Specifically, we derive the NTK of PINNs and prove that, under appropriate conditions, it converges to a deterministic kernel that stays constant during training in the infinite-width limit. This allows us to analyze the training dynamics of PINNs through the lens of their limiting NTK and find a remarkable discrepancy in the convergence rate of the different loss components contributing to the total training error. To address this fundamental pathology, we propose a novel gradient descent algorithm that utilizes the eigenvalues of the NTK to adaptively calibrate the convergence rate of the total training error. Finally, we perform a series of numerical experiments to verify the correctness of our theory and the practical effectiveness of the proposed algorithms. Short bio: Paris Perdikaris is an Assistant Professor in the Department of Mechanical Engineering and Applied Mechanics at the University of Pennsylvania. He received his PhD in Applied Mathematics at Brown University in 2015 working under the supervision of George Em Karniadakis. Prior to joining Penn in 2018, Paris was a postdoctoral researcher at the department of Mechanical Engineering at the Massachusetts Institute of Technology working on physics-informed machine learning and design optimization under uncertainty. His work spans a wide range of areas in computational science and engineering, with a particular focus on the analysis and design of complex physical and biological systems using machine learning, stochastic modeling, computational mechanics, and high-performance computing. Current research thrusts include physics-informed machine learning, uncertainty quantification in deep learning, engineering design optimization, and data-driven non-invasive medical diagnostics. His work and service has received several distinctions including the DOE Early Career Award (2018), the AFOSR Young Investigator Award (2019), and the Ford Motor Company Award for Faculty Advising (2020). LLNL-VIDEO-818632