Data Science Full Course tutorial (FREE online course) for beginners. Data science is considered the "sexiest job of the 21st century". You'll learn the important elements of data science. You'll be introduced to the principles, practices, and tools that make data science the powerful medium for critical insight in business and research. You'll have a solid foundation for future learning and applications in your work. With data science, you can do what you want to do, and do it better. This course covers the foundations of data science, data sourcing, coding, mathematics, and statistics.
*We need your support to SUBSCRIBE / Click LIKE, SHARE if you find this video helpful (as the motivation for us to produce more FREE videos)*
💻 Course created by Barton Poulson from datalab.cc.
⭐️ Course Contents ⭐️
Part 1: Data Science: An Introduction – Foundations of Data Science (
00:00:00)
1.1 Welcome (
0:02)
2.1 Demand for Data Science (
0:22)
2.2 The Data Science Venn Diagram (
7:47)
2.3 The Data Science Pathway (
14:45)
2.4 Roles in Data Science (
19:55)
2.5 Teams in Data Science (
22:44)
3.1 Big Data (
28:33)
3.2 Coding (
34:30)
3.3 Statistics (
37:39)
3.4 Business Intelligence (
41:06)
4.1 Do No Harm (
42:44)
5.1 Methods Overview (
49:22)
5.2 Sourcing Overview (
52:47)
5.3 Coding Overview (
54:47)
5.4 Math Overview (
58:00)
5.5 Statistics Overview (
1:02:00)
5.6 Machine Learning Overview (
1:06:05)
6.1 Interpretability (
1:08:55)
6.2 Actionable Insights (
1:12:15)
6.3 Presentation Graphics (
1:14:14)
6.4 Reproducible Research (
1:30:20)
7.1 Next Steps (
1:31:31)
1:39:46 Part 2: Data Sourcing: Foundations of Data Science (
1:39:46)
1.1 Welcome
2.1 Metrics
2.2 Accuracy
2.3 Social Context of Measurement
3.1 Existing Data
3.2 APIs
3.3 Scraping
4.1 New Data
4.2 Interviews
4.3 Surveys
4.4 Card Sorting
4.5 Lab Experiments
4.6 A/B Testing
5.1 Next Steps
2:32:42 Part 3: Coding (
2:32:42)
1.1 Welcome
2.1 Spreadsheets
2.2 Tableau Public
2.3 SPSS
2.4 JASP
2.5 Other Software
3.1 HTML
3.2 XML
3.3 JSON
4.1 R
4.2 Python
4.3 SQL
4.4 C, C++, & Java
4.5 Bash
5.1 Regex
6.1 Next Steps
4:01:09 Part 4: Mathematics (
4:01:09)
1.1 Welcome
2.1 Elementary Algebra
2.2 Linear Algebra
2.3 Systems of Linear Equations
2.4 Calculus
2.5 Calculus & Optimization
3.1 Big O
3.2 Probability
4:44:03 Part 5: Statistics (
4:44:03)
1.1 Welcome
2.1 Exploration Overview
2.2 Exploratory Graphics
2.3 Exploratory Statistics
2.4 Descriptive Statistics
3.1 Inferential Statistics
3.2 Hypothesis Testing
3.3 Estimation
4.1 Estimators
4.2 Measures of Fit
4.3 Feature Selection
4.4 Problems in Modeling
4.5 Model Validation
4.6 DIY
5.1 Next Step
You may click CC (Caption / Subtitle) on the video or click Transcripts to read the scripts for better understanding.
PUBLICATION PERMISSIONS:
Original video was published with the Creative Commons Attribution license (reuse allowed).
------------------------------------------------------------------------------------
#datascience
#Programming
#learndatascience
#datasciencetutorial
#learnprogramming
#datascienceforbeginners
Java Tutorial Course
https://youtu.be/soV56R0_A8I
Java Spring Boot Web App Tutorial
https://youtu.be/My0NgCZIB4c
Python Tutorial
https://youtu.be/whd7NsPPSyY
SQL Tutorial
https://youtu.be/P0VDmnoMGMg
MongoDB Tutorial
https://youtu.be/l0Wnwxk5rw8
HTML Tutorial
https://youtu.be/4xgNO1RyUqA
Visual Basic (VB) Tutorial
https://youtu.be/Ke8sLtFi1m0
'C#' Tutorial
https://youtu.be/xBqUEbbfpWw
C++ Tutorial
https://youtu.be/VDxamVk1mpw
C++ Programming with Visual Studio Code
https://youtu.be/O4vJsiyB0IM
Data Science Tutorial
https://youtu.be/5Vu-mGVUcS4
Machine Learning with Python
https://youtu.be/GikgGSN0XGI
PHP Tutorial
https://www.youtube.com/watch?v=rN3whkrHeHI
Visit https://thefree4u.com for quick access to various links and various tools, apps, knowledge, etc
https://thefree4u.com