In this video we introduce topos theory in a systematic way, before going for a faster less rigorous tour of some of the deeper ideas in the subject. We start by introducing the idea of a subobject classifier, and how it lets us link ideas about subobjects and logic. We define an elementary topos. We define logical AND, IMPLIES, and FOR ALL. We prove many results interrelating these ideas. Next we discuss other logical notions like FALSE, NOT, and OR. We also discuss epimorphism-monomorphism factorization. Finally, we quickly tour deeper ideas in topos theory, like the idea of forming a Heyting algebra by ordering an object's subobjects by containment. We also discuss notions like the fundamental theorem of topos theory, about how every slice category formed from a topos is also a topos.
Here are some more videos exploring more aspects of topos logic:
Understanding False and Not
https://youtu.be/dWZ-AT2w7mY
More results about exponential and power objects
https://youtu.be/tErjr1XmRXU
"If then" statements in a topos
https://youtu.be/z2CHyAJ-mWw
Implications of implication 1
https://youtu.be/Z4tlsW3HZ_o
Regarding the latter, the result expressing when an arrow w is in [q double-arrow r] , in terms of when [w after [the pullback of q along w]] is in r, can be used together with the Yoneda lemma to determine the D-type elements of [q double-arrow r], in the category of functors from C to Set (for an object D of C).
Correction at time
3:32:12
In fact, I do not think (w times 1_A) is always monic, so I should write
(w times 1_A) in r, rather than (w times 1_A) contained in r, within Theorem 13.9.
A proof of Theorem 13.9 can be found here
"Universal Quantification Proof"
https://youtu.be/6JDEz3MEgJU
Proofs involved in the first part of the video (up until and including the discussion of power objects), can be found in the following four videos:
https://youtu.be/iuM2Mmi1x7A
https://youtu.be/aC_5PQDQlSg
https://youtu.be/TzNDdrlDSrA
https://youtu.be/I3qREzStZ3c
Here is a link in the description
to a video explaining how to
construct subobject classifiers
and exponential objects for a category of functors from C into Set (for some category C)
https://youtu.be/DqmdOZb7v30
Proofs of the results about when arrows are in arrows into power objects can be found here:
https://youtu.be/sdNGhUpCb9s
An (rough) introduction to the Mitchell-Bénabou language can be found in the following videos (I will probably release a higher quality video on this topic later):
https://youtu.be/SmYMPnyZf9U
https://youtu.be/ZPerKA2J7DE
https://youtu.be/eOZhEwA1slA
https://youtu.be/E4FuwWjXFwM
https://youtu.be/MCRQJzMGrdM
https://youtu.be/DbJVQxBD2JE
https://youtu.be/Z2ToNYMuY0w
https://youtu.be/FcBeG9PFD1c
An attempt to explain how the a partial ordering can be associated with a power object, to form an internal Heyting Algebra can be found here:
https://youtu.be/WEuMZapdIXc
A very rich set of examples of applications can be found in this series of videos
on categories of structured sets:
https://youtu.be/Is9vwYUOceg
https://youtu.be/c_u-NFr0m7c
https://youtu.be/HEurpxoC_98
https://youtu.be/TXr3IxfOhEY
https://youtu.be/xBPhH-__dkk
https://youtu.be/dLBPYbIEgwA
https://youtu.be/kDnUsEIXQHQ
https://youtu.be/y6oPlTfY22U
https://youtu.be/ZUZe3cHBV7U
https://youtu.be/yUFpEAYERkY
https://youtu.be/rjAaH0jIITk
https://youtu.be/kIY7pAGxHwo
https://youtu.be/9yrrtwAZKUY
https://youtu.be/TEdk6rFGf8k
https://youtu.be/DE4-t5O14Kk
https://youtu.be/6RKMw_k_X68
https://youtu.be/1Esdw17yo64
https://youtu.be/mcIrMorIJV4
https://youtu.be/KTNKc1tyhdI
https://youtu.be/6zCmbl2yR-s
https://youtu.be/F05jntRvM3A
https://youtu.be/wQ5ITNBqq18
https://youtu.be/NXtIWMNHIoY
https://youtu.be/KsslsRY5Bbc
https://youtu.be/1HZh6Vz8PnU
https://youtu.be/6qxA2aTH1GM
https://youtu.be/2qZWpzaZlFc
https://youtu.be/yyFFRxeMbws
https://youtu.be/RPB8nH0IZ1E
https://youtu.be/4_qL_T1ch_Y
https://youtu.be/wWWVfqZMyLQ
https://youtu.be/ua5nrJQiosI
https://youtu.be/7JvxNcCFl-U
https://youtu.be/wP2GoY9Jo1E
https://youtu.be/rHqjFsmENBM
https://youtu.be/-eGfrlzGMaY
https://youtu.be/_U5hIMZu47M
https://youtu.be/NurtgTgcnIE
https://youtu.be/CGQrXcA7IEs
https://youtu.be/Hx7Cd5rJPbk
https://youtu.be/c7zKKgLLs2M
https://youtu.be/h31Hyo7XdIE
https://youtu.be/4k-MpWoakPI
https://youtu.be/p59jLhdqcSQ
https://youtu.be/YRI2mWRI27M
https://youtu.be/HYqZNwhayqs
https://youtu.be/TKpCocPb0to
https://youtu.be/zWxPVXqypHo
https://youtu.be/-fd5x1LWepk
https://youtu.be/Zyjrp5CWLAY
https://youtu.be/Yc1cq4jVtyY
https://youtu.be/LGFNl-5N-sY
coequalizer documents and videos
https://drive.google.com/open?id=17OON5Bwukl4r-mCYcL8QJlw1E2rQlswS
https://youtu.be/pBVVFRdBEno
https://youtu.be/asIk1EgGjAE
https://youtu.be/HadPH_JW9qA
https://youtu.be/I1dQThR51oI
Geometric Morphisms
https://youtu.be/3L31wrEzL2M
https://youtu.be/wYHCG1rLs3I