We start with the homset based definition of an adjunction. We introduce adjoint functors using preordered sets and Galois connections, and hence give examples of adjunctions between monotonic functions. We give an alternative description of adjunctions via universal morphisms, and describe how this works. We describe lots of theory behind adjoint functors, and how they relate to natural transformations like the unit and co-unit. We also give many examples of adjoint functors. In particular we discuss the co-product functor, the diagonal functor, the product functor, the exponential functor, free categories, and adjoint functors related to discrete functors (which relate to connectivity), as well as free/cofree (chaotic) functors for dynamical systems. The later is related to this online question:
https://math.stackexchange.com/questions/204554/right-adjoint-to-forgetful-functor-from-dynamical-system-digraph?rq=1
A great guide to the later topics is the second addition of Lawvere's Conceptual Mathematics (although just the first addition seems easily accessible online):
https://img.4plebs.org/boards/tg/image/1460/05/1460059215690.pdf
A slight correction for time
2:33:56 is that, the exponential functor is just the right adjoint of the functor which does the product of things by a fixed object, whereas the picture gives the impression that the exponential functor is the right adjoint of the functor that does the product when both input objects are variable.
In the description of my video Category Theory For Beginners: Yoneda Lemma I started to give links to other unlisted youtube videos I made, mostly following my working through Colin Mclarty's Elementary Categories, Elementary Toposes.
I ran out of space in the description, so I put links to the rest of the videos below
Extensions and arrows
https://youtu.be/eCkt6xcLnIs
Initial objects and negation 1
https://youtu.be/F36vYkGoQF4
Initial objects and negation 2
https://youtu.be/7xUNcMizBsY
Initial objects and negation 3
https://youtu.be/__jB13bJnzI
Coproducts in Toposes 1
https://youtu.be/Kwil3Cvth7Y
Coequalizers in Toposes
https://youtu.be/IYtY81jm2lQ
Fuzzy steps towards the fundamental theorem
https://youtu.be/7pqUEGHmZZY
First steps in synthetic differential geometry
https://youtu.be/AyKYKdtelUw
Forgetful and product slice functors
https://youtu.be/Yn4NhDPYVbQ
More slice functors and the fundamental theorem
https://youtu.be/DQ_vGWvoP1k
More about the fundamental theorem
https://youtu.be/m1lHv5qZNbo
philosophical implications of topos theory
https://youtu.be/dalJMB4Hi-U
complements, decidables, booleans
https://youtu.be/2kmCJUq8ZOs
External semantics early stage
https://youtu.be/iH3iUjQCd9U
Fundamentals of topos logic 1
https://youtu.be/iOTZvUmbY8c
Fundamentals of topos logic 2
https://youtu.be/uE2h6kv9Ygk
Fundamentals of topos logic 3
https://youtu.be/HXiFcw7gDkQ
Fundamentals of topos logic 4
https://youtu.be/fzKpvvd8Cb4
Fundamentals of topos logic 5
https://youtu.be/3xPrnRta1_w
Even more external semantics
https://youtu.be/_MXn1YyC1Hc
Categories in Toposes 1
https://youtu.be/hNs3vPOtbQc
Categories in Toposes 2
https://youtu.be/JnENI7IL41Q
Natural number objects 1
https://youtu.be/GEDl2PkHXBg
Natural number objects 2
https://youtu.be/DtQ3ZGODFKg
Topos research goals
https://youtu.be/-qtya07MRoQ
Natural number objects 3
https://youtu.be/qmvJRhBaXus
Sets and topologies briefly
https://youtu.be/L3ixFT1B1hg
Dynamical systems 1
https://youtu.be/XXBN9KdFry4
Dynamical systems 2
https://youtu.be/cyoVVJmnwNM
Dynamical systems 3
https://youtu.be/cyoVVJmnwNM
Dynamical systems 4
https://youtu.be/52JjPinuJqI
Dynamical systems 5
https://youtu.be/dTiT3YjfqkI
Dynamical systems 6
https://youtu.be/NUEFDSSszEc
Dynamical systems 7
https://youtu.be/NXGwAroSf_c
Infinitely rich objects
https://youtu.be/loYHVeSuY-w
Graph neighborhood problem 1
https://youtu.be/cP1iPAnY7A0
Graph neighborhood problem 2
https://youtu.be/VOFAqOYb7AM
Infinitely rich objects 2
https://youtu.be/tKdtB5BLci8
Introducing Heyting algebras
https://youtu.be/heOlxlOo9IU
Topos research goals 2
https://youtu.be/-Z5V9G6DRus
Introducing Heyting algebras 2
https://youtu.be/MKyObwmvgak
Introducing Heyting algebras 3
https://youtu.be/vM9aUzUVJgI
Relating the algebras with the fundamental theorem
https://youtu.be/EZYDl6N18mU