Let's talk about Boltzmann Machines
RESOURCES
[1 📚] Main paper: https://web.archive.org/web/20110718022336/http://learning.cs.toronto.edu/~hinton/absps/cogscibm.pdf
[2 📚] Quick summary: https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf
[3 📚] Geoffry Hinton’s lectures (From 11 c):
https://www.youtube.com/watch?v=IP3W7cI01VY&list=PLiPvV5TNogxKKwvKb1RKwkq2hm7ZvpHz0&index=11
[4 📚] Another easier to understand summary : https://www.engati.com/glossary/boltzmann-machine
[5 📚] University of Toronto :https://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/slides/lec19.pdf
[6 📚] Rithvikmath has amazing videos on Gibb sampling (used here to get sample states from the model and use in our learning procedure) :
https://www.youtube.com/watch?v=MNHIbOqH3sk
[7 📚] Boltzmann Distribution: https://en.wikipedia.org/wiki/Boltzmann_distribution
ABOUT ME
⭕ Subscribe: https://www.youtube.com/c/CodeEmporium?sub_confirmation=1
📚 Medium Blog: https://medium.com/@dataemporium
💻 Github: https://github.com/ajhalthor
👔 LinkedIn: https://www.linkedin.com/in/ajay-halthor-477974bb/
PLAYLISTS FROM MY CHANNEL
⭕ Deep Learning 101: https://www.youtube.com/playlist?list=PLTl9hO2Oobd_NwyY_PeSYrYfsvHZnHGPU
⭕ Natural Language Processing 101: https://www.youtube.com/playlist?list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE
⭕ Reinforcement Learning 101: https://youtube.com/playlist?list=PLTl9hO2Oobd9kS--NgVz0EPNyEmygV1Ha&si=AuThDZJwG19cgTA8
Natural Language Processing 101: https://youtube.com/playlist?list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE&si=LsVy8RDPu8jeO-cc
⭕ Transformers from Scratch: https://youtube.com/playlist?list=PLTl9hO2Oobd_bzXUpzKMKA3liq2kj6LfE
⭕ ChatGPT Playlist: https://youtube.com/playlist?list=PLTl9hO2Oobd9coYT6XsTraTBo4pL1j4HJ
MATH COURSES (7 day free trial)
📕 Mathematics for Machine Learning: https://imp.i384100.net/MathML
📕 Calculus: https://imp.i384100.net/Calculus
📕 Statistics for Data Science: https://imp.i384100.net/AdvancedStatistics
📕 Bayesian Statistics: https://imp.i384100.net/BayesianStatistics
📕 Linear Algebra: https://imp.i384100.net/LinearAlgebra
📕 Probability: https://imp.i384100.net/Probability
OTHER RELATED COURSES (7 day free trial)
📕 ⭐ Deep Learning Specialization: https://imp.i384100.net/Deep-Learning
📕 Python for Everybody: https://imp.i384100.net/python
📕 MLOps Course: https://imp.i384100.net/MLOps
📕 Natural Language Processing (NLP): https://imp.i384100.net/NLP
📕 Machine Learning in Production: https://imp.i384100.net/MLProduction
📕 Data Science Specialization: https://imp.i384100.net/DataScience
📕 Tensorflow: https://imp.i384100.net/Tensorflow
CHAPTERS
0:00 Introduction
0:13 Pass 1: What is Boltzmann Machine?
4:03 Quiz 1
5:07 Pass 2: How does Boltzmann Machine work?
7:00 How the network learns the probability distribution?
14:22 Quiz 2
16:00 Energy landscape
15:19 Why is it "Boltzmann" machine?
16:28 Stochastic neuron probability function
19:50 How to derive the learning rule
20:28 How long does training happen?
21:24 Quiz 3
22:16 Summary