In this video, we explore Bayesian Optimization, which constructs probabilistic models of unknown functions and strategically selects evaluation points by balancing exploration with exploitation through acquisition functions, enabling efficient global optimization with minimal function evaluations.
*Related Videos*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
Hyperparameters Tuning: Grid Search vs Random Search:
https://youtu.be/G-fXV-o9QV8
The Kernel Trick:
https://youtu.be/N_RQj4OL1mg
Cross-Entropy - Explained:
https://youtu.be/Fv98vtitmiA
Dropout - Explained:
https://youtu.be/FDF_Q3_98GQ
Overfitting vs Underfitting:
https://youtu.be/B9rhzg6_LLw
Why Models Overfit and Underfit - The Bias Variance Trade-off:
https://youtu.be/5mbX6ITznHk
Least Squares vs Maximum Likelihood:
https://youtu.be/WCP98USBZ0w
XGBoost Explained in Under 3 Minutes:
https://youtu.be/33fGfuleXw0
*Contents*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
00:00 - Intro
01:00 - Gaussian Processes
01:55 - Active Learning
02:22 - Bayesian Optimization
03:32 - Acquisition Function
04:50 - Grid/Random Search Comparison
06:26 - Bayesian Optimization in ML
07:25 - Summary
07:46 - Outro
*Follow Me*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
🐦 Twitter: @datamlistic https://twitter.com/datamlistic
📸 Instagram: @datamlistic https://www.instagram.com/datamlistic
📱 TikTok: @datamlistic https://www.tiktok.com/@datamlistic
👔 Linkedin: https://www.linkedin.com/company/datamlistic
*Channel Support*
▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬
The best way to support the channel is to share the content. ;)
If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary)
► Patreon: https://www.patreon.com/datamlistic
► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq
► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281
► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5
► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a
#machinelearning #datascience #deeplearning