Bayesian Optimization

Bayesian Optimization

14.276 Lượt nghe
Bayesian Optimization
In this video, we explore Bayesian Optimization, which constructs probabilistic models of unknown functions and strategically selects evaluation points by balancing exploration with exploitation through acquisition functions, enabling efficient global optimization with minimal function evaluations. *Related Videos* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ Hyperparameters Tuning: Grid Search vs Random Search: https://youtu.be/G-fXV-o9QV8 The Kernel Trick: https://youtu.be/N_RQj4OL1mg Cross-Entropy - Explained: https://youtu.be/Fv98vtitmiA Dropout - Explained: https://youtu.be/FDF_Q3_98GQ Overfitting vs Underfitting: https://youtu.be/B9rhzg6_LLw Why Models Overfit and Underfit - The Bias Variance Trade-off: https://youtu.be/5mbX6ITznHk Least Squares vs Maximum Likelihood: https://youtu.be/WCP98USBZ0w XGBoost Explained in Under 3 Minutes: https://youtu.be/33fGfuleXw0 *Contents* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 00:00 - Intro 01:00 - Gaussian Processes 01:55 - Active Learning 02:22 - Bayesian Optimization 03:32 - Acquisition Function 04:50 - Grid/Random Search Comparison 06:26 - Bayesian Optimization in ML 07:25 - Summary 07:46 - Outro *Follow Me* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ 🐦 Twitter: @datamlistic https://twitter.com/datamlistic 📸 Instagram: @datamlistic https://www.instagram.com/datamlistic 📱 TikTok: @datamlistic https://www.tiktok.com/@datamlistic 👔 Linkedin: https://www.linkedin.com/company/datamlistic *Channel Support* ▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬ The best way to support the channel is to share the content. ;) If you'd like to also support the channel financially, donating the price of a coffee is always warmly welcomed! (completely optional and voluntary) ► Patreon: https://www.patreon.com/datamlistic ► Bitcoin (BTC): 3C6Pkzyb5CjAUYrJxmpCaaNPVRgRVxxyTq ► Ethereum (ETH): 0x9Ac4eB94386C3e02b96599C05B7a8C71773c9281 ► Cardano (ADA): addr1v95rfxlslfzkvd8sr3exkh7st4qmgj4ywf5zcaxgqgdyunsj5juw5 ► Tether (USDT): 0xeC261d9b2EE4B6997a6a424067af165BAA4afE1a #machinelearning #datascience #deeplearning