A hands-on lesson on detecting outliers in time series data using Python.
Full source code: https://github.com/marcopeix/youtube_tutorials/blob/main/YT_02_anomaly_detection_time_series.ipynb
Dataset can be found here: https://github.com/numenta/NAB/blob/master/data/realAWSCloudwatch/ec2_cpu_utilization_24ae8d.csv
Labels can be found here: https://github.com/numenta/NAB/blob/master/labels/combined_labels.json
Chapters:
Introduction -
0:00
Get the data -
4:11
Robust Z-score method -
9:08
Robust Z-score method (code) -
13:12
Isolation forest -
20:48
Isolation forest (code) -
22:33
Local outlier factor -
27:16
Local outlier factor (code) -
31:21
Thank you -
34:01