A2A Course #2 - Build A2A Client & Server, here's how

A2A Course #2 - Build A2A Client & Server, here's how

1.492 Lượt nghe
A2A Course #2 - Build A2A Client & Server, here's how
We’ll build two Python agents that communicate using Google’s Agent-to-Agent (A2A) protocol. 📂 Code is available here: A2A Client and Server Code. USE THE VERSION 1 FOLDER FOR THIS VIDEO - https://theailanguage.com/onlySubscribers?id=a2a_samples&site=github Note - Please Subscribe, allow pop-ups and then login to The AI Language website to access our GitHub Repos. Access is available only to our YouTube subscribers. Thanks! Happy building! ☺️ --------------------------------------------------------------------------------------------- Udemy Course (get completion certificate, practice questions, Q&A) https://www.udemy.com/course/modelcontextprotocol/?referralCode=6FADE0F85C5DB97203C6 --------------------------------------------------------------------------------------------- In this beginner-friendly tutorial, we’ll build two Python agents that communicate using Google’s Agent-to-Agent (A2A) protocol. You’ll learn how to: ✅ Create and serve an A2A-compliant Agent Card ✅ Build a Flask-based A2A server that tells the current time ✅ Write a Python client that discovers and interacts with the agent ✅ Understand the full A2A discovery and task lifecycle ✅ Test the entire interaction end-to-end This is the perfect starting point if you’re exploring AI agent communication using open protocols like A2A or want to understand the foundations before adding LLMs and memory! 🧭 Chapters 00:00 Introduction - what we will build 02:25 Create project directories 03:06 Server Code 10:05 Client Code 15:04 Install Python, Flask, requests 16:17 Test A2A Server & Client 18:01 A2A - What we have learn’t 📌 What is Google’s A2A Protocol? The Agent-to-Agent (A2A) protocol is an open standard that allows agents to discover, communicate, and complete tasks across systems. It’s perfect for building interoperable AI tools. 💡 Don’t forget to Like 👍, Subscribe 🔔, and Comment 💬 if you'd like to see follow-ups with LLM-powered agents, memory, and streaming support! #A2A #AIAgents #Flask #PythonTutorial #LLM #AgentToAgent #OpenAgents #a2aprotocol, #googlea2a, #agenttoagent, #AIagents, #flaskapi, #pythonagents, #openaigents, #buildaiagent, #llmtools, #flasktutorial, #agentdemo, #aiclientserver, #AItutorial, #protocols, #agent2agent #agent2agentprotocol